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Abstract

Emergent narrative has the ability to unlock the true potential
of interactive media, moving beyond pre-scripted, fixed story-
lines. Existing implementations of emergent narrative achieve
their results through complex rule systems and agent repre-
sentations, which entail high authoring workload that limit
the feasible scope of storyworlds. In this paper, we propose
an approach that instead aims at leveraging efficient planning
to achieve similar results, using Monte Carlo Tree Search and
efficient data structures. This allows for abstraction and mod-
ularization of agent behavior, and endows agents with a the-
ory of mind by letting them plan for each other. This greatly
simplifies agent definition and removes the need to explicitly
encode intentions. We show that competitive, collaborative
and sustainable behaviors emerge in our system, without the
explicit definition of such behaviors. Based on these prelimi-
nary results, we discuss necessary steps to turn our approach
into an applicable emergent narrative system.

Procedural storytelling has the ability to unlock the true
potential of interactive media and is especially promis-
ing for video games. Unlike the fixed storylines of books,
movies, and many video games, procedural storytelling can
exploit high and affordable computational power to adapt
to user preferences and create unique and personal content.
However, in commercially-successful video games, most in-
stances of procedural storytelling still heavily rely on pre-
scripted storylines and enforce key events (e.g. 80 days,
Heaven’s Vault1). This does not fully capitalize on the po-
tential of procedural storytelling, as many aspects of the ex-
perienced story are predetermined, denying the player true
agency.

Emergent narrative, contrarily, is an approach to procedu-
ral storytelling that affords true agency to the player. Fol-
lowing James Ryan’s definition (Ryan 2018, ch. 2), it is nar-
rative that emerges from the simulation of character activity.
Crucially, it emerges without continuous guidance or ma-
nipulation of the simulation. Instead, the interplay of virtual
characters with their environment, each other, and possibly
human players, generates events that can form a narrative.
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To date, however, few games intended for a general au-
dience employ emergent narrative. A noteworthy example is
Dwarf Fortress (Short and Adams 2019, ch. 13). Works com-
monly associated with emergent narrative, such as Caves
of Qud (Grinblat and Bucklew 2017), Façade (Mateas and
Stern 2003) and Prom Week (McCoy et al. 2012), still have
some form of story guidance. This shows that achieving
true emergent narrative is a difficult problem, and its limited
adoption suggests that many challenges are still unsolved.

Aylett has stated that a key risk of emergent narrative is
that it does not emerge (Aylett 1999). The generated events
may be mathematically unique, but often lack any percep-
tual interestingness. The goal of emergent narrative should
therefore be to achieve a high level of tellability, as studied
by Marie-Laure Ryan (Ryan 1987).

James Ryan points out that any emergent narrative system
is governed by a layer of curation, which extracts tellable
stories from an impartial simulation (Ryan 2018). Ryan’s
point of view lets us split emergent narrative into two sepa-
rate challenges: simulation and curation. It follows, that the
simulation should not itself aim for tellability, but instead
provide a fertile ground for curation. In our eyes that means
generating a variety of non-trivial behaviors and interactions
between agents. In this paper, we present our approach to
simulation.

Some existing approaches, such as Façade and Prom
Week, achieve complex agent behavior by simulating emo-
tions, intentions, and relationships. They rely on complex
rule systems and state representations that require costly
manual authoring and tuning. For instance, Prom Week’s so-
cial schema has about 5000 “social considerations”, which
required extensive manual balancing (Ryan 2018, p. 123).
Hence, due to its workload, the authoring and tuning of
agent behavior is a central limiting factor for many emer-
gent narrative systems. Consequently, addressing its scope
and ease-of-use is essential for a more broad appeal of emer-
gent narrative in real-world applications.

Other approaches, such as Dwarf Fortress, use simpler
agent behaviors. In these, the richness arises from the in-
teraction of larger numbers of simple agents with multi-
faceted environmental simulations. In that sense, they be-
have as complex systems, similar to Conway’s Game of Life



in cellular automata (Gardner 1970). We believe that creat-
ing complex systems out of simple rules is key in creating
easy-to-author simulations for emergent narrative.

Human-like behavior and reasoning, especially in a so-
cial context, is often inherently defined by long-term con-
siderations of cost and benefit. Many existing implemen-
tations of emergent narrative are thus heavily impaired by
the limited timeframe of agent actions, compelling them to
explicitly encode long-term processes into short-term rules
and states. Our hypothesis is that deep, long-term planning
can remove the need of such explicit encodings, greatly sim-
plifying action definitions and state representations. Simpler
actions with less encoded reasoning permits more flexibility
in terms of modularization and abstraction, two key dimen-
sions of the simulation layer (Ryan 2018, ch. 4.1).

Another key aspect of social behavior is the consider-
ation and prediction of the intentions of others, an abil-
ity which psychology describes as part of the theory of
mind (Premack and Woodruff 1978). Existing implementa-
tions infer intentions of others through belief-based reason-
ing or make agents’ intentions perceivable to others. These
approaches need extensive ad-hoc modelling to emulate a
theory of mind. Contrarily, in this paper we show that a the-
ory of mind naturally arises when each agent considers the
long-term planning of other relevant agents.

Overall, in this paper we propose a novel simulation de-
sign for emergent narrative that overcomes many limitations
of existing approaches. This design relies on simple action
definitions and state representation as well as on the capa-
bilities of efficient, deep, multi-agent planning. Specifically,
we provide the following key contributions:

• An approach to simulation for emergent narrative, in
which the domain description defines agent behaviors
through simple declarative actions and utility functions
over an expressive and flexible state description build-
ing on modern programming languages.

• A planning model that fulfills the theory of mind
through the use of multi-agent Monte Carlo Tree Search
on partial worldviews, using an efficient data structure
for representing local states during planning.

• In a simple test scenario, an experimental validation of
the emergent behaviors stemming from the model.

• A delineation of the necessary next steps to scale up the
approach towards realistic scenarios.

Related Work

In her seminal 1999 paper, Aylett introduces the notion
of emergent narrative and outlines its requirements and
risks (Aylett 1999). She observes that emergent narrative is
closer to experiencing real-world events than classic scripted
storytelling. The challenge is that the simulation needs to
“produce narrative often enough and with enough complex-
ity to satisfy the user.” Aylett asserts that agents should be
continuously stimulated, independently of the observer’s po-
sition and should exhibit a sufficiently-rich set of behaviors,
preferably based on emotions.

Riedl and Bulitko’s taxonomy on interactive narrative sys-
tems allows us to situate emergent narrative within the larger
context of procedual storytelling (Riedl and Bulitko 2013).
Two of the taxonomy’s axes are decisive for classifying
emergent narrative: authorial intent, which indicates the ex-
tent to which a human author determines narrative, and vir-
tual character autonomy, which specifies the degree of inde-
pendence that agents have from a central narrative system.
On the axis of authorial intent, emergent narrative strongly
lies at the automatically generated end, indicating that the
resulting narrative is mainly created by the system while the
human author has little influence on its outcome. On the axis
for virtual character autonomy, emergent narrative lies on
the strong autonomy side, as there is little centralized coor-
dination of the agent’s behavior.

Related work has explored wider regions of these
axes. Noteably, Mateas, Stern and colleagues have pro-
duced a large body of work in the field of agent-based
storytelling, including ABL, a declarative authoring lan-
guage for agents (Mateas and Stern 2002a), and the game
Façade, which was published in 2003 (Mateas and Stern
2003). Based on previous work (Bates 1992; Weyhrauch
1997), they have also extensively investigated drama man-
agers (Mateas and Stern 2002b), subsystems that guide the
simulation in order to achieve a certain narrative outcome.
Often using planning to orchestrate agent behavior, drama
managers have been central to a multitude of approaches
to agent-based storytelling, for instance using partial-order
planning (Riedl and Young 2010) or Monte Carlo Tree
Search (MCTS)-based planning (Braunschweiler et al. 2018).

Recently, Ryan has criticized the use of intervening sys-
tems, such as drama managers, in emergent narrative (Ryan
2018). According to Ryan, imposing external control onto
the simulation deprives it of true emergence and therefore
does not result in true emergent narrative. We believe that
this constraint is more consistent with Aylett’s original defi-
nition and we have hence adopted it for this paper. Ryan has
also laid out key challenges for future emergent narrative
research (Ryan, Mateas, and Wardrip-Fruin 2015), which
motivated the conceptual separation of simulation and cu-
ration (Ryan 2018).

Many existing implementations of agent-based story-
telling use complex state representations and action def-
initions in order to achieve compelling agent interac-
tions. Such approaches include simulating agents’ emotional
states (Aylett et al. 2006), using organizational models to
guide agent behavior (Alvarez-Napagao et al. 2012), and
simulating friendships (Ryan, Mateas, and Wardrip-Fruin
2016). McCoy and colleagues “Comme il Faut” system
tracks relationships and agents’ knowledge in order to sim-
ulate complex social behavior (McCoy et al. 2010), an ap-
proach which led to the game Prom Week (McCoy et al.
2012). Some approaches also explore the representation and
simulation of agents’ beliefs (Swartjes 2010), including al-
lowing for lying and misremembering agents (Ryan et al.
2015), as well as extending the belief-desire-intention ar-
chitecture for the narrative context (Berov 2017). By hold-
ing beliefs on other agents, an agent can reason on the
knowledge and actions of its counterparts, leading to a the-
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Figure 1: An overview of the snapshot-diff structure.

ory of mind. Reasoning while considering others has been
achieved through performing agent actions in the belief state
space (Shirvani, Ware, and Farrell 2017) and using dynamic
epistemic logic (Eger and Martens 2017). Other approaches
to theory of mind in agent simulation include the use of
fixed-horizon exhaustive search and recursive models of
other agents (Pynadath and Marsella 2005), and the simu-
lation of mental influence (Chang and Soo 2008).

In contrast, we aim at achieving similar complexity
through efficient deep planning, relieving us from the need
of complex state representations and action definitions. To
pick an action, we search the action space using MCTS. This
method was originally developed to solve Markov Decision
Processes with a large state space and a relatively small ac-
tion space (Chang et al. 2005). In the context of emergent
narrative, agents face similar conditions.

MCTS has been highly successful in building strong game
AI, the most noteworthy example being the game of Go (Sil-
ver et al. 2017). In the field of story generation, Kartal and
colleagues have shown the superiority of MCTS over other
search algorithms (Kartal, Koenig, and Guy 2013). Jaschek
and colleagues have used MCTS to explicitly reason about
trust and distrust for the generation of murder mystery sto-
ries (Jaschek et al. 2019). In the context of interactive games,
Sanselone and colleagues have used MCTS to allow non-
playing characters to react to the player’s action (Sanselone
et al. 2014).

All these works have demonstrated the versatility and the
power of MCTS as an algorithm. However, to our knowledge,
there is no previous study that applies MCTS to emergent
narrative with both algorithmic and computational perfor-
mance in mind. Nor are we aware of any previous approach
to emergent narrative in which theory of mind emerges from
the planning process rather than from explicitly defined be-
lief representations. This paper studies these aspects.

Model

Conceptual model We aim at designing a system that is
generic, flexible and extendable. Following the principle of
emergent narrative, our system simulates a set of individual
agents within a world. Agents are defined in a declarative
way, by providing a set of actions that each have a valid-
ity precondition and that affect the world’s state when ap-

plied. Our system simulates each agent consecutively, with
discrete time steps.

Keeping true to emergent narrative, our system performs
planning on a per-agent basis without a global coordinator.
Therefore, to choose which action to perform, each agent
executes a full planning pass at each time step. While plan-
ning, each agent optimizes its own utility function, whose
value depends on the state. The agents plan on the world
state space as opposed to some narrative space, as our work
addresses the simulation layer and we therefore do not en-
force any narrative structure. Due to the depth of the search
and the resulting combinatorial explosion, it is imperative
that we use an adaptive search strategy (Kartal, Koenig, and
Guy 2013). We thus developed a custom implementation of
the MCTS algorithm (Chang et al. 2005).

While planning, each node in the search tree corresponds
to a potential world state. To reduce state space explosion,
each state only exists once at a given planning depth. This
means that the same node can be reached through different
action sequences (e.g. left then down and down then left),
turning the tree into a more general directed acyclic graph.
To compute node values, we follow (Chang et al. 2005), in-
cluding the use of a discount factor γ. This factor causes the
search algorithm to favor early reward over late reward, al-
lowing MCTS to be used in non-terminating simulations such
as ours. When reaching an unexpanded search node, we per-
form a rollout, i.e. simulating a sequence of random actions.
Contrarily to the initial work (Chang et al. 2005), and sim-
ilarly to recent works on board games (Silver et al. 2017),
we do a rollout to the maximum depth for each leaf of the
search graph.

In order to simulate limited knowledge and reduce com-
putational complexity, each agent plans on a snapshot of the
world state. It encompasses an agent’s internal state as well
as a subset of the external world state within a geometric or
conceptual horizon of perception. If there are other agents
within a subset of that horizon, the planning agent will also
simulate their actions while planning. The actions of the
other agents will be chosen so as to maximize their respec-
tive utility function, based on the planning agent’s snapshot.
Since the simulated actions of others are planned exclusively
on the planning agent’s knowledge of the world, they might
diverge from the actual future actions of these agents. Con-
versely, the more congruent two agents’ snapshots are, the
more likely they are to correctly predict the counterpart’s ac-
tions. By enabling each agent to infer the intentions of others
based on its own perception, we endow the agent with a the-
ory of mind.

To further reduce computational complexity and improve
action flexibility, we introduce higher-level tasks whose exe-
cution last several time steps. For example, this allows mov-
ing to a specific location, instead of simply moving in a car-
dinal direction. While planning, an agent selecting such a
task will commit to it until it either is completed or becomes
invalidated due to changes in the planned state.

Software design Agents perform actions on the world
state during execution and on snapshots while planning. To
avoid copying these snapshots between each planning node,



we use a diff data structure which represents the divergence
of a node’s state from the root node’s state (Figure 1). For-
mally, we define this data structure as follows: Let the world
state W be a key-value map (e.g. a hashmap). Each key in
W is unique and indexes either a primitive value or a nested
key-value map (e.g., a 2-D map where each key is a coordi-
nate and the value is a tile; or a map where each key is an
agent identifier and the value a numerical property of that
agent). An agent plans on a snapshot S, which consists of a
subset of the keys in W with their corresponding associated
values. During planning, agents perform actions that modify
this snapshot S, but instead of modifying S directly, a diff
D is created that holds a map of values for all modified keys
(e.g., a list of updated tiles and changes in numerical proper-
ties). The state of a search node can hence be reconstructed
by applying its diff D to the snapshot S.

Computational and memory efficiency is crucial to our ap-
proach. Our software design achieves this by storing search
nodes in a hash table, indexed by the state of the node and
the node’s depth in the planning graph. This allows for fast
graph traversal and node reuse during planning. To achieve
maximum performance and compile-time memory safety,
we choose Rust as the implementation language2.

Experiments

Experimental setup

We run several experiments to validate the core algorithm
and verify the emergence of complex and social behaviors
from simple rules, without the need to explicitly encode
these behaviors. Our experiments play out in a bounded 2-D
tiled map, in which lumberjack agents collect wood. Each
tile can be occupied by one object (Table 1, top). Each agent
has its own inventory, which can carry an unlimited number
of wood logs and one water bucket. Agents can only move
through empty tiles and interact with objects on adjacent
tiles. The actions that agents can perform vary from experi-
ment to experiment, and are grouped by selectable features
(Table 1, bottom). When planning, agents do not consider
other agents as obstacles, but when performing actions, they
do. Unless stated otherwise, our experiments use the follow-
ing parameters:

• Discount factor γ = 0.95.

• Search depth D = 45 to ensure that an end action only
has an effect of 10 % of the first one (γD < 0.1).

• A batch of 1000 visits per step.

• An agent only waits if no other action is applicable.

• Each experiment is repeated 100 times, average and stan-
dard deviation are shown in plots.

Validation of the algorithm

Effect of search depth In a first experiment, a single agent
is placed on the left side of a corridor, and a single tree is
placed on the right side, at a distance of 5 tiles (Figure 2,
left). We vary the search depth with a number of visits expo-
nentially proportional to the depth, in order to roughly cover

2https://www.rust-lang.org/

tree, height 1–3 rock barrier well agents

Action Next to Effect
Base actions (always available)
Walk
(10)

any Agent moves up, down, left or right
by one step onto an empty tile.

Chop
(20)

Tree Reduces the height of the tree by 1
and provides the chopping agent
with 1 wood. Chopping a tree with
height 1 will remove the tree.

Waiting ( )
Wait
(1)

any Agent does nothing. If no other
action is possible, a Wait action is
queued even if waiting is disabled.

Cooperation ( )
Chop
(20)

Tree Same as Chop, with all adjacent
agents receive one wood.

Blocking ( )
Block
(1)

empty The agent uses one wood to build a
barrier on an adjacent empty tile.

Watering ( )
Pump
(20)

Well The agent gains one water bucket.

Water
(20)

Tree The agent loses one water bucket,
adjacent tree grows to max. height.

Planting ( )
Plant
(1)

empty The agent uses one wood to replace
the adjacent empty tile with a tree
with height 1.

Tasks ( )
Walk to
(10)

any Agent moves onto an empty tile
towards a given location.

Table 1: The possible tiles (top) and agent actions, with their
respective weight and grouped by features (bottom).
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Figure 2: The effect of search depth. Left: The amount of
wood collected after 10 turns. Right: The x position of the
agent after 1 turn. Visit count = 100 · 2D−1 where D is the
search depth. Features: none.



1 5 25 12
5

62
5

31
25

visit count

0

3

6

9

w
oo

d 
co

un
t

Figure 3: The effect of visit count. The amount of wood col-
lected after 30 turns. Features: none.

a similar percentage of the search space independently of
the tested depth. At depths 1–3, no wood is collected, as the
agent does not find a course of action that leads to the tree.
At depth 4, some wood is collected because, although the
tree is initially beyond the search horizon, in some cases the
agent moves right in the first steps, letting the tree enter the
search horizon. At depths 5–6, the wood is fully collected
as the agent first moves right as its only valid action, putting
the tree within the search horizon.

In a second experiment, a single agent is placed near the
center of a room with 2 trees on the left, and 3 trees on the
right, but one step farther away (Figure 2, right). At depth 1,
the agent does not move, because it does not find any tree.
At depths 2–4, the agent first moves left because it sees the 2
trees. At depth 5, the agent first moves right, despite the trees
being farther away, as it realizes that there is more wood to
collect there.

Effect of visit count A single agent is placed in the center
of a 7×7 area, with trees placed in three of the corners (Fig-
ure 3). We vary the number of visits. The average amount of
wood collected, out of a maximum of 9, scales with the num-
ber of visits, reaching a virtually-perfect planning at 600.

Validation of emergence

Competition By considering others’ actions in their plan,
agents are endowed with a theory of mind. To validate that,
we place two agents in a small arena with three trees of
height 1 (Figure 4, top). One agent is next to all three trees,
while the other is only adjacent to one. When planning for
others is disabled, the first agent collects 2 wood. Most of
the time, it starts by chopping either the top or the bottom
tree, as these do not expand the search space as much as cut-
ting the right one, and are hence favoured by MCTS. When
planning for others is enabled, the first agent is able to ex-
ploit its advantageous position by chopping the tree closer
to the other agent first, and hence collects 3 wood.

This ability is even more compelling when an agent can
manipulate the world. To study that, we add the ability to
place barriers, that is, to spend one wood to build an obsta-
cle next to an existing one. When planning for others is dis-
abled, the first agent can collect approximately 6 to 7 wood
(Figure 4, bottom), out of a maximum of 12, since the other
agent also collects wood. If planning for others is enabled,
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Figure 4: The emergence of competition. The amount of
wood collected by the first agent (small red). Top: after 5
turns, features: none. Bottom: after 25 turns, features: , .
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Figure 5: The emergence of cooperation. The amount of
wood collected by the first agent after 10 turns. Feature:

the first agent can predict that the second agent will also cut
wood, and therefore first chops the closest tree, invests that
first wood to build a barrier, and then is free to collect all
remaining wood. That is why, with sufficient visits, it can
collect all 12 wood in most cases, and has 10–11 at the end
(the barrier having cost 1 wood). This demonstrates the ca-
pacity of our agents to trade a short-term investment for a
longer-term reward.

Cooperation Having a theory of mind can also enable co-
operation. Figure 5 shows the amount of wood collected
by the first agent, with and without considering the other’s
actions. Without it, each agent chops its own tree and re-
ceives 3 wood. With it enabled, they self-organize to chop
trees at the same time, leading to 6 wood per agent. Note
that the synchronization happens without any communica-
tion between the agents, but solely through their ability to
reason about the other’s moves.

Sustainability By allowing agents to water and plant
trees, we study the ability of our planning system to create
sustainable and efficient behaviors. An agent is placed in a
corridor between a well on the left, and a tree on the right
(Figure 6). To investigate the ability of an agent to predict
the future, we vary the discount factor γ from 0.1 to 1.0. We
vary the search depth accordingly, except for γ = 1.0, in
which case we fix it to 150. When planting is disabled, with
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Figure 6: The emergence of sustainability. The amount of
wood collected after 30 turns, with planting disabled (fea-
ture: ) and enabled (features: , ).
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Figure 7: Emergence of agent specialization. Histogram of
the difference in the number of chop actions between the two
agents after 100 turns. Features: , ,

γ < 0.9, the agent greedily collects 3 wood, removing the
tree. With 0.9 ≤ γ ≤ 0.98, the agent is able to plan ahead,
which creates a sustainable watering-chopping cycle. As γ
approaches 1.0, the performance degrades because the agent
has no incentive to take immediate action and hence loses
time wandering around.

When planting is enabled, as soon as γ reaches 0.8, the
agent is able to not only create a sustainable cycle, but also
optimize that cycle by cutting the tree and replanting it on a
closer tile. This leads to more wood over the 30 turns of the
experiment. When γ reaches 1.0, the performance degrades
even more than without planting, since the agent has more
action options.

Agent specialization We study how agents can organize
themselves to perform better than when acting alone. Two
agents are placed symmetrically in a small arena (Figure 7,
left). We see that in about 30 % of the cases, there is an
absolute difference of 80–90 chop actions between the two
agents (Figure 7, right). That indicates that one agent spe-
cializes in chopping while the other specializes in watering
the tree. This shows that our system leads to the emergence
of division of labour without explicit communication, sim-
ply by planning for others.

Task-based planning Agents’ movements are planned us-
ing MCTS, which is an inefficient way to solve path planning.
Figure 8 studies a simple environment in which an agent can
collect an unbounded number of wood by continuously re-
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Figure 8: The effect of high-level tasks. The amount of wood
collected after 30 turns, for different distances between the
tree and the well (5 in map on the left), with normal (feature:

) and task-based movements (features: , ).

growing the tree with water. For the default condition (tasks
off), we can observe this behavior when the tree and the well
are next to each other. But as we increase the distance be-
tween the well and the tree, this behavior disappears. This
is due to the combinatorial explosion of possible paths back
and forth from the well, making this option too hard to plan
for. Therefore, the agent fully chops the tree and is left with 3
wood. Task-based planning solves this problem by planning
with movement tasks that span multiple turns. The paths
of these movement tasks are determined by an ad hoc A*
path planner (Hart, Nilsson, and Raphael 1968). When these
tasks are enabled, the agent never fully cuts down the tree,
allowing for a sustainable behavior cycle. Though with in-
creasing distance, the time spent travelling will decrease the
efficiency of wood collection.

Discussion

The results of our experiments show that our approach can
produce non-trivial behaviors based on a limited set of sim-
ple rules. These individual behaviors could be used as build-
ing blocks which, combined, could produce larger simula-
tion systems. Furthermore, these emerging behaviors exhibit
a complexity, especially at the social level, that exceeds that
of the underlying rule system. This emergence of complexity
is key for large-scale simulations in emergent narrative.

Lessons learned Our approach of unit-testing each feature
proved to be key to validate the correctness of the imple-
mentation despite the inherent difficulty of debugging such
a complex algorithm. Thereby, we observed an unexpected
emergent behavior: Sometimes agents place barriers to limit
their own search space, trading an early loss against the risk
of future losses. Reducing γ limits this effect.

Expected performance Our current prototype implemen-
tation runs agent simulations at speeds suitable for interac-
tive applications. For instance, during each planning step in
the agent specialization experiment (Figure 7), our system
performed 1000 visits to a search depth of 45 with an aver-
age branching factor of 4.6. Based on a sample of 100 turns,
our system took an average 432 ms for one planning step on
an Intel i7 8700K at 3.7 GHz. The resulting search trees had
an average 703 nodes and size of 440 kB in memory, while



diffs had an average size of 125 bytes.

Due to the use of a limited perceptual horizon (e.g. neigh-
boring or known agents), the combinatorial explosion is lim-
ited to that horizon. Thus, our approach has the potential
to scale linearly with the total number of simulated agents
in terms of computational requirements, and even super-
linearly in terms of resulting social complexity (Helbing
2012). However, combinatorial explosion remains a limit-
ing factor for an individual agent’s intelligence, and future
work shall focus on further curbing its impact.

A possible improvement is to project the actual state into
a lower-dimensional representation prior to hashing. For in-
stance, if another agent is far away, one could reduce its po-
sition to its quadrant and approximate distance. In that case,
a node would become a projected state and hold a set of pos-
sible real states. When an action would be taken, the actual
real state would be sampled. Hence, an action might lead to
multiple successor states, as in (Chang et al. 2005).

Another optimization would be to learn the action value
function. While we currently set it by hand, a first improve-
ment could be to learn it per agent type, independently of
the state. A second step would be to consider the snapshot
state, for example through a deep neural network, as it is
done in Alpha Go (Silver et al. 2017) or (Kartal, Hernandez-
Leal, and Taylor 2019). This would greatly improve rollout
performance, allowing for longer-term planning.

Potential for emergent narrative We believe that the bur-
den of authoring the complex supporting logical structures
that are necessary for producing rich multi-agent simulations
represents the central limiting factor in the development of
emergent narrative. Though our experiments themselves do
not achieve emergent narrative, they do show that leverag-
ing efficient planning combined with simple rules and per-
agent state value functions can lead to the emergence of
complex behaviors. This emergence demonstrates the poten-
tial to shift the burden of authorship from the human to the
computer. As a result, our approach to simulation could lead
to emergent narrative in large-scale story worlds, provided
that the challenges of scalability and curation are solved.

Future work will need to develop a deeper understanding
of how action variety, utility functions and map layouts af-
fect the emergence of behaviors. For instance, abilities could
be unevenly distributed among agents. Moreover, different
utility functions could be used to endow individual agents
with singular personalities.

On larger maps, factors such as the distribution of re-
sources and the accessibility of different regions would de-
termine the overall progression of the simulation. Future
work should explore how inequality in agent placements, re-
source distribution gradients, islands and bottlenecks could
create behaviors commonly seen in stories.

Our system is designed to be generic and extensible by
letting users define the derivation of the snapshot from the
world state. Future work should therefore also explore how
to use the snapshot mechanism to implement perception,
knowledge and beliefs. These could be modeled by chang-
ing the information that is passed from the world state to the
snapshot, potentially sampling incomplete information. The

snapshot could, for instance, include knowledge on previous
states, whose granularity could depend on their recency. Be-
liefs could also be used within the utility function, requiring
agents to first perceive and learn a counterpart’s personality
before being able to reliably predict its behavior.

Towards authoring and curation To make authoring
easy and simple, future work should develop authoring tools
for lay persons. These could embed front-end languages that
are easier to write than Rust, high-level analytics that com-
bine generic and user-defined metrics into high-level statis-
tics, and easy debugging and tracing tools that allow to in-
spect the behavioral details of a single agent. Building on
such tools, we envision a design methodology that relies on
predictive global metrics.

To achieve true emergent narrative, future work will need
to go beyond the simulation and address curation. The un-
predictability of our bottom-up simulations will likely re-
veal new aspects of curation. Yet, we believe that accessible
tools for simulation authoring provide excellent support for
the study of curation, for example by facilitating psycho-
logical studies, which in turn could inform new metrics for
simulation tuning.

Conclusion

In this paper, we laid out a novel path towards emergent nar-
rative that relies on deep and efficient planning to achieve
complex behaviors. We proved its validity in minimalist se-
tups, in which competitive, collaborative and sustainable be-
haviors can emerge in a bottom-up simulation of simple
agents. We identified the key scaling challenges for realistic
scenarios, and proposed several refinements to address them.
We believe that our exploratory work opens up new research
opportunities towards large-scale simulations for emergent
narrative.
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